Singular monopoles on a flat circle bundle over a Riemann surface

نویسنده

  • Benoit Charbonneau
چکیده

In this paper, the moduli space of singular unitary monopoles on a the product of a circle and a Riemann surface is shown to correspond to a moduli space of stable pairs on the Riemann surface. These pairs consist of a holomorphic vector bundle on the surface and a meromorphic automorphism of the bundle. The singularities of this automorphism correspond to the singularities of the singular monopole. We then consider the complex geometry of the moduli space; in particular, we compute dimensions, both from the complex geometric and the gauge theoretic point of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface

In this paper, the moduli space of singular unitary Hermitian–Einstein monopoles on the product of a circle and a Riemann surface is shown to correspond to a moduli space of stable pairs on the Riemann surface. These pairs consist of a holomorphic vector bundle on the surface and a meromorphic automorphism of the bundle. The singularities of this automorphism correspond to the singularities of ...

متن کامل

Zero-pole Interpolation for Matrix Meromorphic Functions on a Compact Riemann Surface and a Matrix Fay Trisecant Identity

This paper presents a new approach to constructing a meromorphic bundle map between flat vector bundles over a compact Riemann surface having a prescribed Weil divisor (i.e. having prescribed zeros and poles with directional as well as multiplicity information included in the vector case). This new formalism unifies the earlier approach of Ball-Clancey (in the setting of trivial bundles over an...

متن کامل

Flat connections, geometric invariants and energy of harmonic functions on compact Riemann surfaces

This work grew out of an attempt to generalize the construction of Chern-Simons invariants. In this paper, we associate a geometric invariant to the space of flat connection on a SU(2)-bundle on a compact Riemann surface and relate it to the energy of harmonic functions on the surface. Our set up is as follows. Let G = SU(2) and M be a compact Riemann surface and E ~ M be the trivial G-bundle. ...

متن کامل

Non-Abelian Localization For Chern-Simons Theory

We reconsider Chern-Simons gauge theory on a Seifert manifold M (the total space of a nontrivial circle bundle over a Riemann surface Σ). When M is a Seifert manifold, Lawrence and Rozansky have shown from the exact solution of Chern-Simons theory that the partition function has a remarkably simple structure and can be rewritten entirely as a sum of local contributions from the flat connections...

متن کامل

A Certain Type of I R R E G U L a R Algebraic Surfaces

A. Van de Ven has pointed out in connection with his recent results(1) that there are not many known examples of compact connected complex 4-manifolds with positive indices. The purpose of this note is to exhibit a series of compact connected complex 4-manfolds M . . . . n, m = 2, 3, 4, ..., with positive indices. Each complex 4-manifold Mn.m is an irregular algebraic surface having a structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009